Answers to Chapter 11 Study Questions

1. sodium chlorate $=\mathrm{NaClO}_{3}$

284 g solution $\times \frac{12.0 \mathrm{~g} \mathrm{NaClO}}{100 \mathrm{~g} \text { solution }} \times \frac{1 \mathrm{~mol} \mathrm{NaClO}_{3}}{106.4 \mathrm{~g} \mathrm{NaClO}} 330.320$ moles
2. mole fraction $=\frac{\text { moles } \mathrm{C}_{2} \mathrm{H}_{6} \mathrm{O}_{2}}{\text { total moles }}$; moles $\mathrm{C}_{2} \mathrm{H}_{6} \mathrm{O}_{2}=120 . \mathrm{g} \times \frac{1 \text { mol } \mathrm{C}_{2} \mathrm{H}_{6} \mathrm{O}_{2}}{62.0 \mathrm{~g} \mathrm{C}_{2} \mathrm{H}_{6} \mathrm{O}_{2}}=1.94$ moles moles $\mathrm{C}_{3} \mathrm{H}_{6} \mathrm{O}=1.20 \mathrm{~kg} \times \frac{1000 \mathrm{~g}}{1 \mathrm{~kg}} \times \frac{1 \mathrm{~mol} \mathrm{C}_{3} \mathrm{H}_{6} \mathrm{O}}{58.0 \mathrm{~g} \mathrm{C} \mathrm{C}_{3} \mathrm{H}_{6} \mathrm{O}}=20.7 \mathrm{moles}$ total moles $=1.94+20.7=22.6$ moles; mole fraction $=\frac{1.94 \mathrm{~mol} \mathrm{C}_{2} \mathrm{H}_{6} \mathrm{O}_{2}}{22.6 \mathrm{moles}}=0.0857$
3. $\frac{6.90 \mathrm{~mol} \mathrm{KOH}}{1 \mathrm{~L} \text { solution }} \times \frac{1 \mathrm{~L}}{1000 \mathrm{~mL}} \times \frac{1 \mathrm{~mL}}{1.29 \mathrm{~g}} \times \frac{56.1 \mathrm{~g} \mathrm{KOH}}{1 \text { mol } \mathrm{KOH}}=\frac{0.300 \mathrm{~g} \mathrm{KOH}}{\mathrm{g} \text { solution }}=30.0 \% \mathrm{KOH}$
$30.0 \% \mathrm{KOH}=30.0 \mathrm{~g} \mathrm{KOH}+70.0 \mathrm{~g} \mathrm{H}_{2} \mathrm{O}$; molality $=$ moles $\mathrm{KOH} / \mathrm{kg}$ water
$\frac{30.0 \mathrm{~g} \mathrm{KOH}}{70.0 \mathrm{~g} \mathrm{H}_{2} \mathrm{O}} \times \frac{1000 \mathrm{~g} \mathrm{H}_{2} \mathrm{O}}{1 \mathrm{~kg} \mathrm{H}_{2} \mathrm{O}} \times \frac{1 \mathrm{~mol} \mathrm{KOH}}{56.1 \mathrm{~g} \mathrm{KOH}}=7.64$ moles $\mathrm{KOH} / \mathrm{kg}$ water
4. methanol $=\mathrm{CH}_{3} \mathrm{OH}$
molarity $=\frac{\text { moles } \mathrm{CH}_{3} \mathrm{OH}}{L \text { solution }} ; \quad 12.8 \mathrm{~g} \mathrm{CH}_{3} \mathrm{OH} \times \frac{1 \mathrm{~mol} \mathrm{CH}_{3} \mathrm{OH}}{32.0 \mathrm{~g} \mathrm{CH}_{3} \mathrm{OH}}=0.400 \mathrm{~mol} \mathrm{CH}_{3} \mathrm{OH}$
volume $\mathrm{CH}_{3} \mathrm{OH}=12.8 \mathrm{~g} \times \frac{1 \mathrm{~mL}}{0.791 \mathrm{~g}}=16.2 \mathrm{~mL} ;$ volume water $=144 \mathrm{~mL}$
total volume of solution $=16.2 \mathrm{~mL}+144 \mathrm{~mL}=160 \mathrm{~mL}=0.160 \mathrm{~L}$

$$
\text { molarity }=\frac{0.400 \mathrm{~mol} \mathrm{CH}_{3} \mathrm{OH}}{0.160 \text { L solution }^{2}}=2.50 \mathrm{M}
$$

5. The solubility of gases decreases as temperature increases. Two everyday examples of this are: 1) that soda becomes "flat" faster at room temperature than in the refrigerator since the solubility of CO 2 is lower at $25^{\circ} \mathrm{C}$ than at $4^{\circ} \mathrm{C}$, and 2) as water is heated, well before it boils, bubbles of air appear, since the solubility of air is decreasing during heating.
6. Add a small crystal. If it dissolves, the solution was unsaturated. If it doesn't dissolve, the solution was saturated. If more than the crystal comes out of solution, then the solution was supersaturated.
7. $\Delta \mathrm{T}_{\mathrm{f}}=1.86^{\circ} \mathrm{C} \times$ moles solute particles $/ \mathrm{kg}$ water

$$
\Delta \mathrm{T}_{\mathrm{f}}=1.86^{\circ} \mathrm{C} \times \frac{0.11 \text { moles }}{0.055 \mathrm{~kg} \mathrm{H}_{2} \mathrm{O}}=3.72^{\circ} \mathrm{C} ; \quad \mathrm{T}_{\mathrm{f}}=0-\Delta \mathrm{T}_{\mathrm{f}}=0-3.72^{\circ} \mathrm{C}=-3.72^{\circ} \mathrm{C}
$$

8. $\Delta \mathrm{T}_{\mathrm{f}}=1.86^{\circ} \mathrm{C} \mathrm{x}$ moles solute particles $/ \mathrm{kg}$ water ; calcium chloride $=\mathrm{CaCl}_{2}$ moles particles $=27.8 \mathrm{~g} \mathrm{CaCl}_{2} \times \frac{1 \mathrm{~mol} \mathrm{CaCl}_{2}}{111 \mathrm{~g} \mathrm{CaCl}_{2}} \times \frac{3 \text { mol ions }}{1 \text { mol CaCl }_{2}}=0.751 \mathrm{~mol}$ particles $\Delta \mathrm{T}_{\mathrm{f}}=1.86^{\circ} \mathrm{C} \times \frac{0.751 \mathrm{~mol} \text { particles }}{0.250 \mathrm{~kg} \mathrm{H}} \mathrm{O} \mathrm{O} \quad 5.59^{\circ} \mathrm{C} ; \quad \mathrm{T}_{\mathrm{f}}=-5.59^{\circ} \mathrm{C}$
$\left(\mathrm{CaCl}_{2}\right.$ is an electrolyte and it is important to remember that there are 3 moles of ions per mole of CaCl_{2}. The freezing point is three times lower than it would be for a nonelectrolyte.)
9. molar mass $=$ mass $/$ moles; mass $=80.0 \mathrm{~g}$; find moles

$$
\begin{aligned}
& \text { moles }=\frac{\Delta T_{f}}{1.86} \times \mathrm{kg} \mathrm{H}_{2} \mathrm{O}=\frac{4.65^{\circ} \mathrm{C}}{1.86} \times 0.200=0.500 \text { moles } \\
& \text { molar mass }=80.0 \mathrm{~g} / 0.500 \text { moles }=160 . \mathrm{g} / \mathrm{mole}
\end{aligned}
$$

10. From Table 11.5, for benzene: $K_{\mathrm{b}}=2.53^{\circ} \mathrm{C} / m$ and $T_{\mathrm{b}}=80.1^{\circ} \mathrm{C}$.

$$
\Delta T_{\mathrm{b}}=2.53^{\circ} \mathrm{C} / m \times \frac{0.500 \mathrm{~mol}}{0.200 \mathrm{~kg}}=6.32^{\circ} \mathrm{C} ; \quad T_{\mathrm{b}}=80.1^{\circ} \mathrm{C}+6.32^{\circ} \mathrm{C}=86.4^{\circ} \mathrm{C}
$$

11. molar mass $=$ mass $/$ moles; mass $=45.0 \mathrm{~g}$; find moles; $\Delta T_{\mathrm{b}}=90.2^{\circ} \mathrm{C}-80.1^{\circ} \mathrm{C}=10.1^{\circ} \mathrm{C}$

$$
\begin{aligned}
& \text { moles }=\frac{\Delta T_{f}}{2.53} \times \mathrm{kg} \text { benzene }=\frac{10.1^{\circ} \mathrm{C}}{2.53} \times 0.0750=0.300 \mathrm{moles} \\
& \text { molar mass }=45.0 \mathrm{~g} / 0.300 \text { moles }=150 . \mathrm{g} / \mathrm{mole}
\end{aligned}
$$

